

Engineering QUantum enabled Information Processing (EQUIP) – A journey so far!

Jessica Park^{1,2}, Bob Madahar¹ & Stephen Till¹ ¹Cyber and Information Systems Division, Dstl, UK ²Department of Computer Science, University of York, UK

25/10/2023 / © Crown copyright 2023 Dstl

UK OFFICIAL

1. Introduction

2. Quantum Landscape and Strategy

3. Quantum Enabled Intelligence Research

- a) Stakeholder Workshop
- b) Phase 1 Results and Outcomes
- c) Phase 2 Results and Outcomes

4. Conclusions and Looking Forward

Acknowledgements

- UK MOD Strategic Command & A²ISR Project
- Roberto Lo Nardo, Roberto Desimone & Chris Willis
 - BAE Systems
- Susan Stepney & David Griffin
 - University of York
- Viv Kendon
 - University of Strathclyde
- Nicholas Chancellor
 - University of Durham
- Catherine Higham
 - University of Glasgow
- Adrian Bedford
 - OxbrdgRbtx Ltd

BAE SYSTEMS

3 **UK OFFICIAL**

Quantum Landscape and Strategy

25/10/2023 / © Crown copyright 2023 Dstl

UK OFFICIAL

So what for Military? Unprecedented performance offered by Q coherence!

- Potential 'Game changer' with range of potential applications
 - Position, navigation and timing
 - Sensing, imaging and ranging
 - Data analytics and situational awareness from Q sensor data
- Opportunity & challenge for QC
- Growth of counters (e.g. Qsafe crpytos)

From: NATO S&T 190422-ST_Tech_Trends_Report_2020-2040

dstl

The Science Inside

UK National Quantum Technology Programme (NQTP)

Source: McKinsey analysis

Quantum Enabled Intelligence

25/10/2023 / © Crown copyright 2023 Dstl

UK OFFICIAL

StratCom: Quantum Enabled Intelligence (QEI) projects

Objectives

- Benchmark D-Wave vs. 'commodity' processors
 CPUs, GPUs &
 - specialised chips (e.g. Intel Movidius NN chip);

- 2. Develop Operational Capability Demonstrator (OCD)
 - Hybrid system digital front end + QC;

8 UK OFFICIAL

dstl The Science Inside

- Workshop with stakeholders
 - High level analysis of potential INT cycle areas for quantum acceleration
 - >30 use cases, 6 selected for possible development
- Exploring potential infrastructure needs
- Developing Roadmaps to in-service capability

Stakeholder Workshop Outcomes

dstl The Science Inside

Part 1: Results and Outcomes

- Assessing the potential of QNNs for image data
- Developed auto-encoders for image pre-processing due to limited number of qubits
- Investigating how D-Wave can augment digital NNs
- Focus on sampling: rapidly find the 'best' QUBO solution
- Fewer epochs for training than in digital systems

Test	Model Input Size>	145	230	465
Images	Processor	Execution time µsecs		
10	QPU	1813.8	2014.4	2301.1
10	GPU (CPU)	272.5 (10.9)	251.8 (13.9)	231.7 (13.5)
100	GPU (CPU)	38.5 (15.2)	37.6 (15.8)	18.7 (17.2)
1000	GPU (CPU)	3 (38.5)	3 (37.6)	3 (18.7)

dstl The Science Inside

11

UK OFFICIAL

Part 2: Results and Outcomes

- Timing study on the use of sparse RBMs for image classification on both D-Wave QPU and CPU hardware
- Sparse RBMs were used to avoid embedding where there is limited connectivity on the device
- Reduced MNIST dataset (0,1,2,8) was used with one-hot encoding of label
- Discrete Cosine Transformation (DCT) was used to compress the images classically

dstl

The Science Inside

Part 2: Results and Outcomes

The main contributor to the epoch time on the D-Wave processor was the combination of internet latency, queuing and programming. This could be improved in theory by having a local QPU.

Conclusions and Looking Forward

25/10/2023 / © Crown copyright 2023 Dstl

UK OFFICIAL

Recap

- The UK has a strong and growing quantum community made up of:
 - Government
 - Academia
 - Industry (including a number of start-ups)
- The Ministry of Defence plays a key role in steering, funding and executing the research and development in this field
- The image processing chain has been identified as a key area for potential quantum advantage
- The Quantum Enabled Intelligence Research Project has made a number of key strides forward in this area...

dstl The Science Inside

The Quantum Enabled Intelligence Research Project has made a number of key strides forward in this area...

- Quantum annealers can be used advantageously for the Gibbs Sampling step in image classification using RBM implementations of neural networks
- Classical algorithms for pre- and post- processing have been developed with the aim of a hybrid image processing pipeline
- Phase 1 showed that the D-Wave annealer was capable of training with fewer epochs than the digital CPU but phase 2 showed that each epoch took more (wall-clock) time
- When latencies are stripped out, D-Wave performance exceeded CPU performance at all image sizes
- The low connectivity of the sparse RBMs are likely to have contributed to the poor classification results
 UK OFFICIAL

dstl The Science Inside

 Hyper-parameter optimization for the D-Wave RBM will enable better classification performance

- Quantum annealers are designed for optimization and therefore the default parameters are suited to this application and not RBM training
- Alternative classification algorithms that require less I/O such as reservoir computing models may present a better use of near-term quantum computers
- The National Quantum Strategy was released in March 2023 and lays out the UK's intention and strategy to become 'a leading quantumenabled economy, recognising the importance of quantum technologies for the UK's prosperity and security.'

Source: https://www.gov.uk/government/publications/national-quantum-strategy

17

Questions?

Contact:

jpark@dstl.gov.uk bkmadahar@dstl.gov.uk

25/10/2023 / © Crown copyright 2023 Dstl

UK OFFICIAL